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To study chaos and bifurcation of a gear system, a five-degree-of-freedom nonlinear dynamic
model of a gear-rotor-bearing system is established. It consists of a gear pair, supporting
shafts, bearings and other auxiliary components. The effects of frequency, backlash, bear-
ing clearance, comprehensive transmission error and stiffness on nonlinear dynamics of the
system are investigated according to bifurcation diagrams, phase portraits and Poincaré
maps by a numerical method. Some nonlinear phenomena such as grazing bifurcation, Hopf
bifurcation, inverse-Hopf bifurcation, chaos and coexistence of attractors are investigated.
Different grazing bifurcations and their causes are discussed. The critical parameters are
identified, too.
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1. Introduction

Gear systems play a major role in mechanical engineering and other engineering fields. There are
plenty of researches on nonlinear dynamics of gear systems since Kahraman and Singh (1990)
researched nonlinear dynamics of a spur gear pair where the backlash was represented by a
truncated series expansion. They developed a 3-DOF dynamic model including non-linearities
associated with radial clearances in the radial rolling element bearings and backlash between
a spur gear pair in 1991. Ranghothama and Narayanan (1999) investigated periodic motions
and chaotic motions of a nonlinear geared rotor-bearing system. Theodossiades and Natsiavas
(2001) investigated the response and stability characteristics of a gear pair system supported
on oil journal bearings. Choi et al. (2001) analyzed dynamic characteristics of a geared rotor-
-bearing system with the transfer matrix method. Chen et al. (2011) developed a multi-degree-
-of-freedom nonlinear dynamic gear system with dynamic backlash, friction and time varying
stiffness. Chang-Jian (2010a,b) established a dynamical model of a HSFD mounted gear-bearing
system, a dynamical model of a gear-bearing system under nonlinear suspension, Chang-Jian
and Chang (2012a,b) – a dynamical model of the porous squeeze film damper mounted on a
gear-bearing system and a dynamical model of a gear pair system equipped with journal bearings
under turbulent low. Cui et al. (2012) established a dynamical model of a geared rotor system
with a nonlinear oil film force and a nonlinear mesh force. Xiang et al. (2016) proposed a period
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expansion method to build a 6-DOF nonlinear dynamic model of a spur gear pair with time
varying stiffness, gear backlash and surface friction.

The motor and other auxiliary components mounted on the input and output shafts as rotor
are abstracted as rotors coupled with the gear-bearing system in this paper. A 5-DOF nonlinear
dynamic model which is closer to the engineering practice is developed to research the bifurcation
and chaos of the system. It is a multiple clearance and multi-parameter coupled system.

2. Nonlinear dynamic model of a gear-rotor-bearing system

A simplified theoretical model of a gear-rotor-bearing system is illustrated in Fig. 1. The gear
meshing part is simplified as two rotors coupled with viscous dampers and nonlinear springs.
Three nonlinear factors such as time-varying stiffness, backlash and the comprehensive transmis-

Fig. 1. Dynamic model of the gear-rotor-bearing system

sion error are considered in it. Axial vibration, transverse vibration and longitudinal vibration
are not taken into account. Torsional vibration displacements between meshing gears are stu-
died only. The torsional vibration displacement of the two gears and rotors is denoted as θi
(i = 1, 2, 3, 4), respectively. The mass moment of inertia of the two gears is Ii (i = 2, 3) and the
moment of inertia of the two rotors is Ii (i = 1, 4), respectively. The base circle radius of the
two gears is rbi (i = 2, 3), respectively. Torsional damping is c1 and c3 and the torsional stiffness
of the two rotation shafts is k1 and k3, respectively. The mesh stiffness and damping coefficient
is k′2 and c

′

2, respectively. The force of gears by bearings on the input and output shafts is Fbi
(i = 1, 2), respectively. The torque of the input and output shafts is T and TL, respectively. The
damping coefficient of the bearings on the input and output shafts is cbi (i = 1, 2), respectively.
The average support stiffness of the bearings on the input and output shafts is kbi (i = 1, 2),
respectively. The backlash function f(·) is usually used to represent gear clearance. The bearing
clearance functions on the input and output shafts is f(·) (i = 1, 2), respectively. The actual
backlash is δ2. The bearing clearance on the input and output shafts is δbi (i = 1, 2), respectively.
The displacement of the center of the two gears is ygi (i = 1, 2), respectively. The time-varying
comprehensive transmission error of the gear pair is e(t). The absolute rotational equations of
the system can be derived according to the 2nd Newton’s law
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I1θ̈1 + c1(θ̇1 − θ̇2) + k1(θ1 − θ2) = T

I2θ̈2 − c1(θ̇1 − θ̇2)− k1(θ1 − θ2) +Rb2c
′

2[Rb2θ̇2 −Rb3θ̇3 − ė(t)− (ẏg1 − ẏg2)]

+Rb2k
′

2f [Rb2θ2 −Rb3θ3 − e(t)− (yg1 − yg2)] = 0

I3θ̈3 − c3(θ̇3 − θ̇4) + k1(θ1 − θ2)−Rb3c
′

2[Rb2θ̇2 −Rb3θ̇3 − ė(t)− (ẏg1 − ẏg2)]

−Rb3k
′

2f [Rb2θ2 −Rb3θ3 − e(t)− (yg1 − yg2)] = 0

I4θ̈4 + c3(θ̇3 − θ̇4) + k3(θ3 − θ4) = −TL

(2.1)

The theoretical backlash is defined as 2b, and b is selected as the feature size. The relative
rotational equation of the system can be written as in Eqs. (2.2) by subtracting every two in
Eqs. (2.1) with the following expressions γ = b/Rb2, q1 = (θ1 − θ2)/γ, q2 = [Rb2θ2 − Rb3θ3 −
e(t)− (yg1 − yg2)]/b and q3 = (θ3 − θ4)/γ
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(2.2)

The dimensionless torsional vibration equation of the system can be obtained by defining

τ = ωnt, q̇(1,2,3) = q̇(1,2,3)/ω
2
n, ẏ(g1,g2) = bωnq̇(4,5) where ωn =

√

k′2I2I3/(I3R
2
b2 + I2R

2
b3)

q̈1 + ξ11q̇1 − ξ12q̇2 + k11qq − k12[1 + k cos(τ + ϕ)]f(q2) = Fmi + Fai sin(τ + ϕi)

q̈2 − ξ21q̇1 + ξ22q̇2 − ξ23q̇3 − k21q1 + k22[1 + k cos(τ + ϕ)]f(q2)− k23q3

= −ω2ε sin(τ + ϕ)− q̈4 + q̈5

q̈3 − ξ31q̇2 + ξ32q̇3 − k31[1 + k cos(τ + ϕ)]f(q2) + k32q3 = Fml + Fal sin(τ + ϕo)

(2.3)

The dimensionless parameters are defined as
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in equations (2.3). The time-varying mesh stiffness is k(t) = 1 + k sin(ωt + ϕ) (Kahraman and
Singh, 1990) where the dimensionless mesh frequency is ω = ωe/ωn and ωe is the mesh frequency
of the gear. The dynamical transmission error is e(t) = 1+ ε sin(ωt+ϕ) (Kahraman and Singh,
1990). The dimensionless loads can be defined as

Fmi =
T

I1γ
Fai =

T sin(ωt+ ϕi)

I1γ
Fml =

TL
I4γ

Fal =
TL sin(ωt+ ϕo)

I4γ

where ϕi and ϕo is the initial phase angular of the excitation and response, respectively.
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Transverse vibration equations of the system can be formulated according to the 2nd New-
ton’s law

mg1ÿg1 + cb1ẏg1 − c
′

2[Rb2θ̇2 −Rb3θ̇3 − ė(t)− (ẏg1 − ẏg2)] + kb1f b1(yg1)

− k′2f [Rb2θ2 −Rb3θ3 − e(t)− (yg1 − yg2)] = −Fb1

mg2ÿg2 + cb2ẏg2 + c
′

2[Rb2θ̇2 −Rb3θ̇3 − ė(t)− (ẏg1 − ẏg2)] + kb2f b2(yg2)

+ k′2f [Rb2θ2 −Rb3θ3 − e(t)− (yg1 − yg2)] = Fb2

(2.4)

where the mass of the gear and rotor on the drive and driven shaft is mg1 and mg2, respectively.
The dimensionless transverse vibration equations of the system can be obtained when the

dimensionless parameters are defined as

ξ41 =
cb1
2mg1ωn
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c′2

2mg1ωn
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cb2
2mg2ωn
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c′2

2mg2ωn

k41 =
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k42 =
k′2
mg2ω2n

k51 =
kb2
mg2ω2n

k52 =
k′2
mg2ω2n

F b1 =
Fb1
mg1bω2n

F b2 =
Fb2
mg2bω2n

and

q̈4 + 2ξ41q̇4 + k41f b1(q4)− 2ξ42q̇2 − k42f(q2) = −F b1

q̈5 + 2ξ51q̇5 + k51f b2(q5) + 2ξ52q̇2 + k52f(q2) = F b2
(2.5)

A 5-DOF dimensionless dynamical equation of the gear-rotor-bearing system can be obtained
by coupling the torsional vibration and transverse vibration. It can be written as the state
equation by defining x1 = q1, x2 = ẋ1, x3 = q2, x4 = ẋ3, x5 = q3, x6 = ẋ5, x7 = q4, x8 = ẋ7,
x9 = q5, x10 = ẋ9

ẋ1 = x2

ẋ2 = Fmi + Fai sin(τ + ϕi)− ξ11x2 + ξ12x4 − k11x1 + k12[1 + k cos(τ + ϕ)]f(x3)

ẋ3 = x4

ẋ4 = −ẋ8 + ẋ10 + ξ21x2 − ξ22x4 + ξ23x6 + k21x1 − k22[1 + k cos(τ + ϕ)]f(x3)

+ k23x5 − ω
2ε sin(τ + ϕ)

ẋ5 = x6

ẋ6 = Fml + Fal sin(τ + ϕo) + ξ31x4 − ξ32x6 + k31[1 + k cos(τ + ϕ)]f(x3)− k33x5

ẋ7 = x8

ẋ8 = −F b1 − 2ξ41x8 − k41fb1(x7) + 2ξ42x4 + k42f(x3)

ẋ9 = x10

ẋ10 = F b2 − 2ξ51x10 − k51fb2(x9)− 2ξ52x4 − k52f(x3)

(2.6)

Backlash is one of the main nonlinear factors in the gear system. The backlash function of
the gear pair can be written as follows if the dimensionless backlash is defined as D = δ2/(2b)

f(x) =















x−D for x > D

0 for −D ¬ x ¬ D

x+D for x < −D

(2.7)

The rolling bearing is composed of the inner ring, outer ring and rolling elements. Clearance
exists between the inner ring and rolling elements or rolling elements and the outer ring. It is



Bifurcation and chaos analysis of a gear-rotor-bearing system 589

one of the main nonlinear factors in the system, too. The bearing clearance functions can be
drawn up as follows if the dimensionless bearing clearance is defined as Dbi = δbi/(2b) (i = 1, 2)

f b1(x7) =















x7 −Db1 for x7 > Db1

0 for −Db1 ¬ x7 ¬ Db1

x7 +Db1 for x7 < −Db1

f b2(x9) =















x9 −Db2 for x9 > Db2

0 for −Db2 ¬ x9 ¬ Db2

x9 +Db2 for x9 < −Db2

(2.8)

3. Bifurcation and chaos of the system

A gearbox of a metro train is selected as the research object. The material of the gear is 40Cr.
The related parameters of the gearbox are given in Table 1. The lengths of two shafts are 450mm.
The elastic modulus of the shafts is 2 · 1011 Pa, the Poisson ratio is 0.3. Each shaft is supported
by two bearings, 7306. The preload load of the bearing is 200N. The torque is 150N·m. The
related parameters of bearings are given in Table 2. The calculated dimensionless parameters are
given in Table 3. Other dimensionless coefficients of the time-varying stiffness can be calculated
by computer programs according to the meshing parameters real-timely.

Table 1. Parameters of the baseline example gear pair

System parameters Pinion Gear System parameters Pinion Gear

Number of teeth z 40 156 Radius of base circle rb [mm] 56.4 219.9

Mass [kg] 1.82 2.63
Mass moment of inertia

2.6 3.1
of gear [×10−3 kg·m2]

Module [mm] 3 3
Mass moment of inertia

3.4 2.8
of rotor [×10−3 kg·m2]

Backlash [µm] 100 100 Meshing damping ratio 0.1 0.1

Width of gear [mm] 52 48 Pressure angle α [◦] 20 20

Table 2. Parameters of bearings

System parameters Value System parameters Value

Inner radius [mm] 30 Race way curvity of inner ring 0.52

Outer radius [mm] 62 Race way curvity of outer ring 0.525

Radius of rolling [mm] 9.525 Radial clearance [µm] 60

Number of rolling elements 11

Table 3. Value of dimensionless parameters

Param. Value Param. Value Param. Value Param. Value Param. Value

k11 1.05 k33 1.05 ξ11 0.1 ξ32 0.1 k52 0.6

k12 0.6 k31 0.3 ξ12 0.1 ξ31 0.1 ξ52 0.125

k21 0.6 k41 1.1 ξ22 0.2 ξ41 0.01 F b2 0.1

k23 0.7 k42 0.6 ξ21 0.05 ξ42 0.125 Fai 0.1

k22 0.8 k51 1.1 ξ23 0.05 ξ51 0.01 Fml 0.1

Fmi 0.05 F b1 0.1 Fal 0.2
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3.1. Effect of the mesh frequency

The bifurcation diagram of the relative displacement via the frequency, ω ∈ [0.5, 2.5] as
D = 1.0 and Db = Db1 = Db2 = 0.6 is illustrated in Fig. 2. The bifurcation and chaos of the
system with the increasing frequency will be discussed in three regions precisely.

Fig. 2. Bifurcation diagram of the system via the mesh frequency

Fig. 3. Diagrams of Poincaré mapping and phase portraits: (a) ω = 0.5, (b) ω = 0.502, (c) ω = 0.545,
(d) ω = 0.56. Here, the diagram of Poincaré mapping in a and b is represented by ×

Firstly, the bifurcation and chaos of the system as ω ∈ [0.5, 0.62] is studied. The motion
of the system is stable period-5 motion as ω = 0.5. The diagram of Poincaré mapping and
phase portrait is illustrated in Fig. 3a as ω = 0.5 and the diagram of Poincaré mapping is
represented by ×. There are 5 discrete points in the diagram of Poincaré mapping. Doubling
periodic bifurcation occurs and the period-5 motion doubles to period-10 motion when the
frequency ω increases to ω = 0.501. The diagram of Poincaré mapping and phase portrait is
illustrated in Fig. 3b as ω = 0.502. The period-10 degenerates to period-5 when the frequ-
ency ω increases to 0.503. The period-5 motion transits to period-1 motion when ω increases
to 0.505. Doubling periodic bifurcation occurs with an increase in the mesh frequency and the
period-1 motion doubles to stable period-2 motion as ω = 0.5125. Saddle-node bifurcation leads
the system to chaotic motion as ω = 0.5315. The diagram of Poincaré mapping is illustrated in
Fig. 3c as ω = 0.545. The chaotic motion of the system exists in a small range and it evolves
in quasi-periodic motion by Hopf bifurcation when ω increases to 0.556. A diagram of Poincaré
mapping is presented in Fig. 3d. There are two closed tori in the diagram of Poincaré map-
ping. Inverse Hopf bifurcation occurs when ω increases to 0.565 and it leads the quasi-periodic
motion to period-2 motion. Inverse-doubling periodic bifurcation leads the period-2 motion to
period-1 motion when ω increases in 0.602. The period-1 motion exists in a considerable range
of frequency.
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Fig. 4. Phase portraits and diagrams of Poincaré mapping: (a) ω = 0.99, (b) ω = 1.004795,
(c) ω = 1.005, (d) ω = 1.041, (e) ω = 1.05, (f) ω = 1.0625, (g) ω = 1.06508242, phase portrait, grazing
at the gear surface; (h) ω = 1.08, (i) ω = 1.09205, phase portrait, grazing at the gear surface;

(j) ω = 1.1, (k) ω = 1.13, (l) ω = 1.1332, phase portrait, grazing at the gear surface; (m) ω = 1.135,
(n) ω = 1.1675, phase portrait, grazing at the gear surface; (o) ω = 1.18, (p) ω = 1.2, (q) ω = 1.2087,
phase portrait, grazing at the bearing surface; (r) ω = 1.21, (s) ω = 1.213, phase portrait, grazing at the

bearing surface; (t) ω = 1.22. Here, the diagram of Poincaré mapping in the phase portrait is
represented by × and the blue line represents the grazing boundary
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Secondly, the bifurcation and chaos of the system as ω ∈ [0.9, 1.3] is discussed. The
motion of the system is a stable period-1 motion as ω < 0.9747. Hopf bifurcation occurs
when the frequency increases to ω = 0.9747 and it leads the period-1 motion to quasi-
-periodic motion. Diagram of Poincaré mapping is illustrated in Fig. 4a as ω = 0.99. There
is a closed torus in it. The quasi-periodic motion transients to 4 saddle-nodes and they trans-
form to chaos quickly. Diagrams of Poincaré mapping is illustrated in Fig. 4b and Fig. 4c as
ω = 1.004795 and ω = 1.005. The chaos transients into the period-4 motion when the frequency
increases to ω = 1.017. Saddle-node bifurcation leads the period-4 motion to chaos when the
frequency increases to ω = 1.040798. The diagram of Poincaré mapping is illustrated in Fig. 4d
as ω = 1.041. Phase lock occurs when the frequency increases to ω = 1.0495 and the diagram of
Poincaré mapping is illustrated in Fig. 4e as ω = 1.05. The phase lock transients into period-11
motion when the frequency increases to ω = 1.0623. The phase portrait and diagram of Poincaré
mapping is illustrated in Fig. 4f as ω = 1.0625 and the diagram of Poincaré mapping is repre-
sented by ×. The phase trajectory of the system is tangent to the boundary x3 = 1.0. It implies
the grazing occurred in the tooth surface as ω=1.06508242 and its phase portrait is illustrated
in Fig. 4g. The phase portrait and diagram of Poincaré mapping is illustrated in Fig. 4h as
ω = 1.08 after the tooth surface grazing. The number of the periodic motion is not changed but
the phase trajectory is changed by the grazing. The phase portraits and diagrams of Poincaré
mapping before and after the grazing are shown in Fig. 4f and Fig. 4h. The grazing occurs in
the tooth surface again when the frequency increases to ω = 1.09205 and it leads the periodic
motion to chaos. The phase portrait of the grazing is illustrated in Fig. 4i. The diagram of
Poincaré mapping of the chaos is illustrated in Fig. 4j as ω = 1.1 after the tooth surface grazing.
The chaotic motion changes to period-17 motion by phase lock when the frequency increases to
ω = 1.1255. The phase portrait and diagram of Poincaré mapping is illustrated in Fig. 4k as
ω = 1.13, and there are 17 discrete points in the diagram of Poincaré mapping. The grazing in
the tooth surface leads the periodic motion to chaos when the frequency increases to ω = 1.1332,
and the phase portrait of the grazing is illustrated in Fig. 4l. The diagram of Poincaré mapping
of the chaotic motion is illustrated in Fig. 4m as ω = 1.135 after the tooth surface grazing. The
motion of the system goes to period-23 motion when the frequency increases to ω = 1.154. The
periodic motion exists in a narrow region only. The grazing occurs in the tooth surface again
when the frequency increases to ω = 1.1657 and it leads the periodic motion to chaotic motion.
The phase portrait of the grazing is illustrated in Fig. 4n. The diagram of Poincaré mapping
of the chaotic motion is illustrated in Fig. 4o as ω = 1.18 after the tooth surface grazing. The
chaos transients to period-6 motion when the frequency increases to ω = 1.1927. The phase
portrait and diagram of Poincaré mapping is illustrated in Fig. 4p as ω = 1.2, and there are
6 discrete points in the diagram of Poincaré mapping. The grazing occurs in the bearing and
it leads the phase trajectory of the period-6 motion change when the frequency increases to
ω = 1.2087. The phase portrait of the grazing of the bearing is illustrated in Fig. 4q, and the
clearance of the bearing is Db = 0.6. The phase portrait and diagram of Poincaré mapping after
bearing grazing is illustrated in Fig. 4r as ω = 1.21. The number of the periodic motion of the
system is not changed but the topological shape of the motion is changed by the grazing in
the bearing. Grazing occurs in the bearing when the frequency increases to ω = 1.213 again,
and the phase portrait is illustrated in Fig. 4s. The period-6 motion trajectory is changed by
the bearing grazing again. The phase portrait and diagram of Poincaré mapping after bearing
grazing is illustrated in Fig. 4t as ω = 1.22. A conclusion can be drawn that the bearing grazing
leads the phase trajectory of the system change but it can not change the number of the system
motion. Period-doubling bifurcation occurs when the frequency increases to ω = 1.25 and it
leads the period-6 motion to period-12 motion. Inverse period-doubling bifurcation occurs when
the frequency increases to ω = 1.2645 and the period-12 motion transients into period-6 motion.
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Fig. 5. Phase portraits and diagrams of Poincaré mapping: (a) ω = 1.3607, phase portrait, grazing at
the tooth back; (b) ω = 1.38, (c) ω = 1.443, phase portrait, grazing at the tooth back; (d) ω = 1.45,
(e) ω = 1.46, (f) ω = 1.575, (g) ω = 1.59, (h) ω = 1.845, (i) ω = 1.85, (j) ω = 1.94, (k) ω = 1.98,

(l) ω = 2.14. Herein, the diagram of Poincaré mapping in the phase portrait is represented by × and the
blue line represents the grazing boundary

Finally, the bifurcation and chaos of the system as ω ∈ [1.3, 2.5] is studied. The motion of
the system is stable period-6 as 1.2645 < ω < 1.3607. Grazing occurs at the tooth back and
the phase trajectory of the system is changed. The phase portrait of the tooth back grazing is
shown in Fig. 5a. The diagram of Poincaré mapping and phase portrait after tooth back grazing
is illustrated in Fig. 5b as ω = 1.38. The phase trajectory is changed and the number of periodic
motion is not changed comparing Fig. 5b to Fig. 4t by the tooth back grazing. Grazing occurs
at the tooth back again when the frequency increases to ω = 1.443 and the period-6 motion
evolves into period-15 motion. The phase portrait of the tooth back grazing is shown in Fig. 5c
as ω = 1.443. The diagram of Poincaré mapping after the tooth back grazing is illustrated
in Fig. 5d as ω = 1.45. The period-15 motion evolves into chaotic motion by saddle-node
bifurcation when the frequency increases to ω = 1.4521 and the diagram of Poincaré mapping is
illustrated in Fig. 5e as ω = 1.46. Saddle-node bifurcation occurs when the frequency increases
to ω = 1.5412 and it changes the chaotic motion into period-8 motion. Hopf bifurcation occurs
when the frequency increases to ω = 1.5697 and the period-8 motion degenerates to quasi-
-periodic motion. The diagram of Poincaré mapping is illustrated in Fig. 5f as ω = 1.575. There
are 8 closed tori in the figure. The torus loses its smooth ness and breaks with the increasing
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frequency gradually, and the quasi-periodic motion degenerates to phase lock when the frequency
increases to ω = 1.583. The diagram of Poincaré mapping is illustrated in Fig. 5g as ω = 1.59.
The phase lock degenerates to the period-8 motion when the frequency increases to ω = 1.6016.
The period-8 motion goes to chaotic motion by period-doubling bifurcation with an increase in
the frequency. The diagram of Poincaré mapping is illustrated in Fig. 5h as ω = 1.845. The
phase lock appears again when the frequency increases to ω = 1.85. The diagram of Poincaré
mapping is illustrated in Fig. 5i as ω = 1.85 and it degenerates to period-28 motion when
the frequency increases to ω = 1.889. Hopf bifurcation occurs when the frequency increases to
ω = 1.921 and it leads the period-28 motion to a quasi-periodic motion. The diagram of Poincaré
mapping is illustrated in Fig. 5j as ω = 1.94. There are 2 closed tori in the figure. The stability
of the quasi-periodic motion is lost with an increase in the frequency, and the phase lock appears
when the frequency increases to ω = 1.976. The diagram of Poincaré mapping is illustrated in
Fig. 5k as ω = 1.98. The phase lock evolves into period-8 motion when the frequency increases
to ω = 2.0799. Hopf bifurcation occurs when the frequency increases to ω = 2.12 and it leads the
period-8 motion to quasi-periodic motion again. The diagram of Poincaré mapping is illustrated
in Fig. 5l as ω = 2.14. There is a closed torus in the figure. Inverse-Hopf bifurcation occurs
when the frequency increases to ω = 2.1587 and the quasi-periodic motion degenerates to stable
period-1 motion. The period-1 motion exists in a wide region.

The system exhibits complicate dynamical characteristics with an increase in the frequency as
above all. Saddle-node bifurcation, Hopf bifurcation, inverse-Hopf bifurcation, period-doubling
bifurcation, grazing and so on take place in the process of change of the frequency. Grazing occurs
in many areas such as the tooth surface, tooth back and the bearing. The phase trajectory of
the system is changed but the number of periodic motion is not changed by the bearing grazing.
Not only the phase trajectory but also the number of the periodic motion is changed by grazing
at the tooth surface and the tooth back, probably. The gear-rotor-bearing system is a multi-
-clearance nonlinear system. Clearances exist in the tooth back and the contact surface of the
bearing. This may lead to grazing motion in different regions. But the stable simplicity periodic
motion can be found in the gear-rotor-bearing system according to the above analysis when
the frequency is taken to a reasonable value. The motion of the system remains stable period-1
motion when the frequency is in the range of ω ∈ [0.602, 0.9747] and ω > 2.1587.

3.2. Effect of the time-varying stiffness

The bifurcation diagram of the relative displacement via the amplitude of the time-varying
stiffness k is illustrated in Fig. 6 when the values of dimensionless parameters are taken from
Table 3 and ω = 1.05. The motion of the system is a long-periodic motion when the amplitude of
the time-varying stiffness is k < 0.1032 as shown in Fig. 6. The long-periodic motion evolves into
quasi-periodic motion by Hopf bifurcation when the amplitude of the time-varying stiffness is
k = 0.1032. The quasi-periodic motion degenerates to long-periodic motion again when the am-
plitude of the time-varying stiffness increases to k = 0.1173. The long-periodic motion degenera-
tes to quasi-periodic motion by Hopf bifurcation again when the amplitude of the time-varying
stiffness increases to k = 0.1332. Two tori in these two quasi-periodic motions are irregular
and the irregularity leads the quasi-periodic motion unstable. The motion of the system shocks
between the long-periodic motion and the quasi-periodic motion when the amplitude of the
time-varying stiffness k exists in the range of [0.1332, 0.2556]. The motion of the system moves
to period-10 motion by inverse-Hopf bifurcation as k = 0.2556. The phase portrait and diagram
of Poincaré mapping are illustrated in Fig. 7a as k = 0.26. There are 10 discrete points. which
implies that the motion of the system is stable period-10 motion. Grazing occurs in two be-
arings and it makes the phase trajectory of the system change. Phase portraits of the grazing
are illustrated in Fig. 7b and Fig. 7c. The phase portrait and diagram of Poincaré mapping after
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grazing is illustrated in Fig. 7d as k = 0.28. The periodic motion trajectory is changed slightly
but the motion property is not changed by the grazing comparing Fig. 7a to Fig. 7d. It is said
that the grazing of the bearing makes the motion trajectory change only. Grazing occurs in the
reverse direction of two bearings simultaneously. It implies that grazing is caused by the lean
of the shaft in the meshing process, probably. The motion of the system is possibly changed by
the assemblement precision of the gear system and the lean of the shaft in the movement. The
high assemblement precision of the gear system is used to obtain high movement stability in the
meshing in practical engineering.

Fig. 6. Bifurcation diagram of system via the amplitude of the time-varying stiffness

Fig. 7. Phase portraits and diagrams of Poincaré mapping: (a) k = 0.26, (b) k = 0.272, phase portrait,
grazing in the bearing; (c) k = 0.272, phase portrait, grazing in the bearing; (d) k = 0.26. Here, the
diagram of Poincaré mapping is represented by × and the blue line represents the grazing boundary

The motion of the system exhibits nonlinear characteristics when the stiffness is small but a
stable periodic motion can be obtained as the stiffness is large when other parameters are the
same. The quench is used to improve the meshing stiffness. High meshing stiffness is used to
obtain stable periodic motion in practical engineering.

3.3. Effect of the bearing clearance

The bearing clearance Db has an essential influence on the dynamical behavior of the gear-
-rotor-bearing system. The bifurcation diagrams of the relative displacement via the bearing
clearance Db are illustrated in Fig. 8 when the values of dimensionless parameters are taken
from Table 3 and ω = 1.05. Figure 8a is the bifurcation diagram of the system for the increasing
bearing clearance and Fig. 8b is the bifurcation diagram of the system for the decreasing bearing
clearance.
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Fig. 8. Bifurcation diagrams of system via the bearing clearance, Db = [0.1, 0.6]: (a) with the increasing
of the bearing clearance; (b) with the decreasing of the bearing clearance

The motion of the system is stable period-1 when the bearing clearance is lower than 0.132 as
shown in Fig. 8a. Hopf bifurcation leads the period-1 motion to quasi-periodic motion when the
bearing clearance increases to Db = 0.132. It is a closed limit torus in the diagram of Poincaré
mapping. The smoothing of the limit torus loses gradually, the distortion and breakage occur.
The motion of the system evolves into period-4 motion when the bearing clearance increases.
The period-4 motion evolves into quasi-periodic motion by Hopf bifurcation when the bearing
clearance increases to Db = 0.1815. It is an irregular closed limit torus. The irregularity of the
closed limit torus directs the motion of the system unstable. The motion of the system shocks
between the periodic motion and quasi-periodic motion in the region of Db ∈ [0.23, 0.295]. The
quasi-periodic motion evolves into period-13 motion when the bearing clearance increases to
Db = 0.261. The period-13 motion changes to quasi-periodic motion when the bearing clearance
increases to Db = 0.272. The quasi-periodic motion evolves into period-9 motion when the
bearing clearance increases to Db = 0.294. The motion of the system shocks between the periodic
motion and quasi-periodic motion in the region of Db ∈ [0.321, 0.413]. The motion of the system
evolves into period-5 motion by the phase lock when the bearing clearance is greater than 0.413.
The periodic motion evolves into quasi-periodic motion when the bearing clearance increases
to Db = 0.4798 but it exists in a narrow region. It degenerates to period-5 motion again when
the bearing clearance increases to Db = 0.484. The phase lock occurs again when the bearing
clearance increases to Db = 0.5618.

There is a coexistence of attractors in the region of Db ∈ [0.3935, 0.5612] according to Fig. 8.
The diagrams of Poincaré mapping are shown in Fig. 9 for Db = 0.4, 0.44, 0.5, 0.52, respectively.
Different colors represent different attractors of the coexistence. The red one represents the
attractor with the increasing bearing clearance and the black one represents the attractor with
the decreasing bearing clearance. The coexistence of attractors for periodic motion and phase
lock, periodic motion and quasi-periodic motion, periodic motion and periodic motion and so
on in the region is discovered.

The bearing clearance affects the nonlinear dynamic behavior of the system. The motion
of the system is stable when the value of the bearing clearance is small, and it is complicated
when the clearance is big according to the analysis above. The motion of the system is stable
period-1 motion when the bearing clearance is less than 0.12. The motion of the system is stable
periodic motion but there is coexistence of attractors when the bearing clearance is in the region
of Db ∈ [0.41, 0.5]. This coexistence means strong nonlinear characteristics because the motion
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Fig. 9. Diagrams of Poincaré mapping: (a) Db = 0.4, (b) Db = 0.44, (c) Db = 0.5, (d) Db = 0.52. Here,
red color represents the diagram of Poincaré mapping with the increasing bearing clearance and black

color represents the one with the decreasing bearing clearance

form will change with a change in the initial value. A small value of the bearing clearance should
be selected to obtain stable motion of the gear system. The bearing clearance should be selected
as 40%-50% of the backlash if the small bearing clearance can not be obtain by manufacturing
precision. Noise and vibration increase when the degree of wear reaches a certain degree in
engineering practice. Big bearing clearance causes strong impact and vibration because of wear
of rolling elements. So a small bearing clearance should be selected and the worn bearing should
be replaced to decrease the impact and vibration and increase the stability of the system.

3.4. Effect of the comprehensive transmission error and backlash

The bifurcation diagrams of the relative displacement versus the amplitude of the compre-
hensive transmission error ε are illustrated in Fig. 10a. The values of dimensionless parameters
are taken from Table 3 and ω = 1.05. The motion of the system is stable period-5 when the
amplitude of the comprehensive transmission error is less than 0.7316 as shown in Fig. 10a.
There are 5 discrete points in the diagram of Poincaré mapping. The periodic motion evolves

Fig. 10. Bifurcation diagrams of the system: (a) vs. the transmission error, (b) vs. backlash

into chaotic motion when the amplitude of the comprehensive transmission error increases to
ε = 0.7316. The motion of the system shocks between the long-periodic motion and chaotic
motion with the increasing amplitude of the comprehensive transmission error. The region of
the long-periodic motion becomes narrow and the region of the chaotic motion becomes wide
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with a gradual increase in the amplitude of the comprehensive transmission error. The motion
of the system is chaotic in this region. The morphology of the chaotic motion change when the
amplitude of the comprehensive transmission error increases to ε = 1.4108.

The motion of the system becomes instable with an increase in the amplitude of error (com-
prehensive transmission error of the system). Chaotic motion, shock of chaotic motion and
periodic motion occur with an increase in the amplitude of the error, and the instability of the
system becomes worse. The motion of the system preserves stable when the value of the ampli-
tude of the error is low. So the manufacturing and assemblement precision of the gear should be
improved to obtain stability of the system.

The bifurcation diagram of the relative displacement versus the backlash D is illustra-
ted in Fig. 10b. The motion of the system is period-8 when the backlash is in the region of
D ∈ [0.2004, 0.5154]. There are 8 discrete points. The motion of the system is chaotic when the
backlash is less than 0.2004 and greater than 0.5154. Backlash is an important factor to lead
the motion of the system to chaos. Chaos is caused by rattling when the backlash is small, and
it is caused by impact when the backlash is big. So a reasonable backlash must be selected to
improve the stability of the gear system.

4. Conclusion

A nonlinear dynamic model of a gear-rotor-bearing system is established when the time-varying
stiffness, tooth surface friction, backlash, bearing clearance and the comprehensive transmis-
sion error are considered. The effects of frequency, backlash, bearing clearance, comprehensive
transmission error and stiffness on dynamic characteristics of the system are analyzed. Some
conclusions can be drawn according to the analysis.

Firstly, there are some complicated nonlinear phenomena such as grazing bifurcation, quasi-
-periodic bifurcation, chaos and coexistence of attractors in the system. Stable periodic motion
can be obtained by low backlash, bearing clearance, comprehensive transmission error, high
manufacturing and assemblement precision of the gear and mesh stiffness.

Secondly, the phase trajectory and the number of periodic motion can be changed by the
grazing at the tooth surface and the tooth back. Different kinds of grazing motions may be
produced by clearances existing in the gear back and the contact surface of the bearing. But a
stable periodic motion can be obtained when the frequency is taken to a reasonable value.

Finally, the phase trajectory of the system should be changed but the number of the periodic
motion can not be changed by the bearing grazing. A small value of the bearing clearance should
be selected to obtain stable motion of the gear system. Sometimes, grazing occurs in the reverse
direction of two bearings simultaneously. This means that the grazing is caused by the lean of
the shaft in the meshing process. The motion of the system is changed by the assemblement
precision of the gear system and the lean of the shaft in the movement. High assemblement
precision of the gear system should be secured to obtain high movement stability of the meshing
in the engineering practice.
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